skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mullins, Angela_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Urban centers have inherited a unique mix of persistent contamination that impacts interactions among urban soil and groundwater systems. In particular, the potential for urban groundwater to transport contaminants from surface sources through the subsurface environment and ultimately to soils is not well understood. Studies have focused on specific ‘natural’ mechanisms driving distribution of metals in urban soils. However, very few studies have examined the accumulation of contamination in soils at groundwater discharge locations (springs) and the potential for groundwater to redistribute urban legacy contaminants far from the source. Soil transects straddling four groundwater springs in Pittsburgh, Pennsylvania were sampled to evaluate patterns resulting from contaminated groundwater discharge on urban soils. Metal concentrations were measured in pore water and compared with concentrations observed in total digestions and exchangeable extractions (acetic acid) of the soil. Across the springs Co, Cr, Ni, and V (metals often used in steel alloys) were elevated downslope, suggesting contaminated groundwater discharge enriches trace metals in these locations. These processes create unexpected biogeochemical patterns on the landscape and have the potential to create hotspots of soil metal contamination at predictable points across the urban landscape. 
    more » « less